Line data Source code
1 : // Copyright (c) 2009-2010 Satoshi Nakamoto
2 : // Copyright (c) 2009-2021 The Bitcoin Core developers
3 : // Copyright (c) 2017-2021 The PIVX Core developers
4 : // Distributed under the MIT software license, see the accompanying
5 : // file COPYING or http://www.opensource.org/licenses/mit-license.php.
6 :
7 : #include "crypto/common.h"
8 : #include "crypto/sha3.h"
9 : #include "netaddress.h"
10 : #include "hash.h"
11 : #include "prevector.h"
12 : #include "tinyformat.h"
13 : #include "util/asmap.h"
14 : #include "util/string.h"
15 : #include "utilstrencodings.h"
16 :
17 : #include <algorithm>
18 : #include <array>
19 : #include <cstdint>
20 : #include <ios>
21 : #include <iterator>
22 : #include <tuple>
23 :
24 : constexpr size_t CNetAddr::V1_SERIALIZATION_SIZE;
25 : constexpr size_t CNetAddr::MAX_ADDRV2_SIZE;
26 :
27 85319 : CNetAddr::BIP155Network CNetAddr::GetBIP155Network() const
28 : {
29 85319 : switch (m_net) {
30 : case NET_IPV4:
31 : return BIP155Network::IPV4;
32 176 : case NET_IPV6:
33 176 : return BIP155Network::IPV6;
34 2 : case NET_ONION:
35 3 : switch (m_addr.size()) {
36 : case ADDR_TORV2_SIZE:
37 : return BIP155Network::TORV2;
38 1 : case ADDR_TORV3_SIZE:
39 1 : return BIP155Network::TORV3;
40 0 : default:
41 0 : assert(false);
42 : }
43 0 : case NET_I2P:
44 0 : return BIP155Network::I2P;
45 0 : case NET_CJDNS:
46 0 : return BIP155Network::CJDNS;
47 0 : case NET_INTERNAL: // should have been handled before calling this function
48 0 : case NET_UNROUTABLE: // m_net is never and should not be set to NET_UNROUTABLE
49 0 : case NET_MAX: // m_net is never and should not be set to NET_MAX
50 0 : assert(false);
51 : } // no default case, so the compiler can warn about missing cases
52 :
53 0 : assert(false);
54 : }
55 :
56 5496 : bool CNetAddr::SetNetFromBIP155Network(uint8_t possible_bip155_net, size_t address_size)
57 : {
58 5496 : switch (possible_bip155_net) {
59 5471 : case BIP155Network::IPV4:
60 5471 : if (address_size == ADDR_IPV4_SIZE) {
61 5469 : m_net = NET_IPV4;
62 5469 : return true;
63 : }
64 2 : throw std::ios_base::failure(
65 2 : strprintf("BIP155 IPv4 address with length %u (should be %u)", address_size,
66 6 : ADDR_IPV4_SIZE));
67 13 : case BIP155Network::IPV6:
68 13 : if (address_size == ADDR_IPV6_SIZE) {
69 12 : m_net = NET_IPV6;
70 12 : return true;
71 : }
72 1 : throw std::ios_base::failure(
73 1 : strprintf("BIP155 IPv6 address with length %u (should be %u)", address_size,
74 3 : ADDR_IPV6_SIZE));
75 2 : case BIP155Network::TORV2:
76 2 : if (address_size == ADDR_TORV2_SIZE) {
77 1 : m_net = NET_ONION;
78 1 : return true;
79 : }
80 1 : throw std::ios_base::failure(
81 1 : strprintf("BIP155 TORv2 address with length %u (should be %u)", address_size,
82 3 : ADDR_TORV2_SIZE));
83 2 : case BIP155Network::TORV3:
84 2 : if (address_size == ADDR_TORV3_SIZE) {
85 1 : m_net = NET_ONION;
86 1 : return true;
87 : }
88 1 : throw std::ios_base::failure(
89 1 : strprintf("BIP155 TORv3 address with length %u (should be %u)", address_size,
90 3 : ADDR_TORV3_SIZE));
91 2 : case BIP155Network::I2P:
92 2 : if (address_size == ADDR_I2P_SIZE) {
93 1 : m_net = NET_I2P;
94 1 : return true;
95 : }
96 1 : throw std::ios_base::failure(
97 1 : strprintf("BIP155 I2P address with length %u (should be %u)", address_size,
98 3 : ADDR_I2P_SIZE));
99 2 : case BIP155Network::CJDNS:
100 2 : if (address_size == ADDR_CJDNS_SIZE) {
101 1 : m_net = NET_CJDNS;
102 1 : return true;
103 : }
104 1 : throw std::ios_base::failure(
105 1 : strprintf("BIP155 CJDNS address with length %u (should be %u)", address_size,
106 3 : ADDR_CJDNS_SIZE));
107 : }
108 :
109 : // Don't throw on addresses with unknown network ids (maybe from the future).
110 : // Instead silently drop them and have the unserialization code consume
111 : // subsequent ones which may be known to us.
112 : return false;
113 : }
114 :
115 : /**
116 : * Construct an unspecified IPv6 network address (::/128).
117 : *
118 : * @note This address is considered invalid by CNetAddr::IsValid()
119 : */
120 3534570 : CNetAddr::CNetAddr() {}
121 :
122 1 : void CNetAddr::SetIP(const CNetAddr& ipIn)
123 : {
124 : // Size check.
125 1 : switch (ipIn.m_net) {
126 0 : case NET_IPV4:
127 0 : assert(ipIn.m_addr.size() == ADDR_IPV4_SIZE);
128 : break;
129 1 : case NET_IPV6:
130 1 : assert(ipIn.m_addr.size() == ADDR_IPV6_SIZE);
131 : break;
132 0 : case NET_ONION:
133 0 : assert(ipIn.m_addr.size() == ADDR_TORV2_SIZE || ipIn.m_addr.size() == ADDR_TORV3_SIZE);
134 : break;
135 0 : case NET_I2P:
136 0 : assert(ipIn.m_addr.size() == ADDR_I2P_SIZE);
137 : break;
138 0 : case NET_CJDNS:
139 0 : assert(ipIn.m_addr.size() == ADDR_CJDNS_SIZE);
140 : break;
141 0 : case NET_INTERNAL:
142 0 : assert(ipIn.m_addr.size() == ADDR_INTERNAL_SIZE);
143 : break;
144 0 : case NET_UNROUTABLE:
145 0 : case NET_MAX:
146 0 : assert(false);
147 : } // no default case, so the compiler can warn about missing cases
148 :
149 1 : m_net = ipIn.m_net;
150 1 : m_addr = ipIn.m_addr;
151 1 : }
152 :
153 6387 : void CNetAddr::SetLegacyIPv6(Span<const uint8_t> ipv6)
154 : {
155 6387 : assert(ipv6.size() == ADDR_IPV6_SIZE);
156 :
157 6387 : size_t skip{0};
158 :
159 6387 : if (HasPrefix(ipv6, IPV4_IN_IPV6_PREFIX)) {
160 : // IPv4-in-IPv6
161 2690 : m_net = NET_IPV4;
162 2690 : skip = sizeof(IPV4_IN_IPV6_PREFIX);
163 3697 : } else if (HasPrefix(ipv6, TORV2_IN_IPV6_PREFIX)) {
164 : // TORv2-in-IPv6
165 5 : m_net = NET_ONION;
166 5 : skip = sizeof(TORV2_IN_IPV6_PREFIX);
167 3692 : } else if (HasPrefix(ipv6, INTERNAL_IN_IPV6_PREFIX)) {
168 : // Internal-in-IPv6
169 1 : m_net = NET_INTERNAL;
170 1 : skip = sizeof(INTERNAL_IN_IPV6_PREFIX);
171 : } else {
172 : // IPv6
173 3691 : m_net = NET_IPV6;
174 : }
175 :
176 6387 : m_addr.assign(ipv6.begin() + skip, ipv6.end());
177 6387 : }
178 :
179 : /**
180 : * Create an "internal" address that represents a name or FQDN. CAddrMan uses
181 : * these fake addresses to keep track of which DNS seeds were used.
182 : * @returns Whether or not the operation was successful.
183 : * @see NET_INTERNAL, INTERNAL_IN_IPV6_PREFIX, CNetAddr::IsInternal(), CNetAddr::IsRFC4193()
184 : */
185 128 : bool CNetAddr::SetInternal(const std::string &name)
186 : {
187 128 : if (name.empty()) {
188 : return false;
189 : }
190 128 : m_net = NET_INTERNAL;
191 128 : unsigned char hash[32] = {};
192 128 : CSHA256().Write((const unsigned char*)name.data(), name.size()).Finalize(hash);
193 128 : m_addr.assign(hash, hash + ADDR_INTERNAL_SIZE);
194 128 : return true;
195 : }
196 :
197 : namespace torv3 {
198 : // https://gitweb.torproject.org/torspec.git/tree/rend-spec-v3.txt#n2135
199 : static constexpr size_t CHECKSUM_LEN = 2;
200 : static const unsigned char VERSION[] = {3};
201 : static constexpr size_t TOTAL_LEN = ADDR_TORV3_SIZE + CHECKSUM_LEN + sizeof(VERSION);
202 :
203 7 : static void Checksum(Span<const uint8_t> addr_pubkey, uint8_t (&checksum)[CHECKSUM_LEN])
204 : {
205 : // TORv3 CHECKSUM = H(".onion checksum" | PUBKEY | VERSION)[:2]
206 7 : static const unsigned char prefix[] = ".onion checksum";
207 7 : static constexpr size_t prefix_len = 15;
208 :
209 7 : SHA3_256 hasher;
210 :
211 7 : hasher.Write(MakeSpan(prefix).first(prefix_len));
212 7 : hasher.Write(addr_pubkey);
213 7 : hasher.Write(VERSION);
214 :
215 7 : uint8_t checksum_full[SHA3_256::OUTPUT_SIZE];
216 :
217 7 : hasher.Finalize(checksum_full);
218 :
219 7 : memcpy(checksum, checksum_full, sizeof(checksum));
220 7 : }
221 :
222 : }; // namespace torv3
223 :
224 : /**
225 : * Parse a TOR address and set this object to it.
226 : *
227 : * @returns Whether or not the operation was successful.
228 : *
229 : * @see CNetAddr::IsTor()
230 : */
231 623067 : bool CNetAddr::SetSpecial(const std::string& str)
232 : {
233 623067 : static const char* suffix{".onion"};
234 623067 : static constexpr size_t suffix_len{6};
235 :
236 1245269 : if (!ValidAsCString(str) || str.size() <= suffix_len ||
237 1867476 : str.substr(str.size() - suffix_len) != suffix) {
238 : return false;
239 : }
240 :
241 17 : bool invalid;
242 623084 : const auto& input = DecodeBase32(str.substr(0, str.size() - suffix_len).c_str(), &invalid);
243 :
244 17 : if (invalid) {
245 : return false;
246 : }
247 :
248 16 : switch (input.size()) {
249 10 : case ADDR_TORV2_SIZE:
250 10 : m_net = NET_ONION;
251 10 : m_addr.assign(input.begin(), input.end());
252 10 : return true;
253 5 : case torv3::TOTAL_LEN: {
254 5 : Span<const uint8_t> input_pubkey{input.data(), ADDR_TORV3_SIZE};
255 5 : Span<const uint8_t> input_checksum{input.data() + ADDR_TORV3_SIZE, torv3::CHECKSUM_LEN};
256 5 : Span<const uint8_t> input_version{input.data() + ADDR_TORV3_SIZE + torv3::CHECKSUM_LEN, sizeof(torv3::VERSION)};
257 :
258 5 : uint8_t calculated_checksum[torv3::CHECKSUM_LEN];
259 5 : torv3::Checksum(input_pubkey, calculated_checksum);
260 :
261 5 : if (input_checksum != calculated_checksum || input_version != torv3::VERSION) {
262 2 : return false;
263 : }
264 :
265 3 : m_net = NET_ONION;
266 3 : m_addr.assign(input_pubkey.begin(), input_pubkey.end());
267 3 : return true;
268 : }
269 : }
270 :
271 : return false;
272 4 : }
273 :
274 622908 : CNetAddr::CNetAddr(const struct in_addr& ipv4Addr)
275 : {
276 622908 : m_net = NET_IPV4;
277 622908 : const uint8_t* ptr = reinterpret_cast<const uint8_t*>(&ipv4Addr);
278 622908 : m_addr.assign(ptr, ptr + ADDR_IPV4_SIZE);
279 622908 : }
280 :
281 1101 : CNetAddr::CNetAddr(const struct in6_addr& ipv6Addr, const uint32_t scope)
282 : {
283 1101 : SetLegacyIPv6(Span<const uint8_t>(reinterpret_cast<const uint8_t*>(&ipv6Addr), sizeof(ipv6Addr)));
284 1101 : scopeId = scope;
285 1101 : }
286 :
287 754 : bool CNetAddr::IsBindAny() const
288 : {
289 754 : if (!IsIPv4() && !IsIPv6()) {
290 : return false;
291 : }
292 4114 : return std::all_of(m_addr.begin(), m_addr.end(), [](uint8_t b) { return b == 0; });
293 : }
294 :
295 5892311 : bool CNetAddr::IsIPv4() const { return m_net == NET_IPV4; }
296 :
297 6717413 : bool CNetAddr::IsIPv6() const { return m_net == NET_IPV6; }
298 :
299 561221 : bool CNetAddr::IsRFC1918() const
300 : {
301 561221 : return IsIPv4() && (
302 1122164 : m_addr[0] == 10 ||
303 561177 : (m_addr[0] == 192 && m_addr[1] == 168) ||
304 560932 : (m_addr[0] == 172 && m_addr[1] >= 16 && m_addr[1] <= 31));
305 : }
306 :
307 559296 : bool CNetAddr::IsRFC2544() const
308 : {
309 1118575 : return IsIPv4() && m_addr[0] == 198 && (m_addr[1] == 18 || m_addr[1] == 19);
310 : }
311 :
312 559295 : bool CNetAddr::IsRFC3927() const
313 : {
314 559295 : return IsIPv4() && HasPrefix(m_addr, std::array<uint8_t, 2>{169, 254});
315 : }
316 :
317 559291 : bool CNetAddr::IsRFC6598() const
318 : {
319 1118563 : return IsIPv4() && m_addr[0] == 100 && m_addr[1] >= 64 && m_addr[1] <= 127;
320 : }
321 :
322 559291 : bool CNetAddr::IsRFC5737() const
323 : {
324 1118443 : return IsIPv4() && (HasPrefix(m_addr, std::array<uint8_t, 3>{192, 0, 2}) ||
325 1118304 : HasPrefix(m_addr, std::array<uint8_t, 3>{198, 51, 100}) ||
326 559152 : HasPrefix(m_addr, std::array<uint8_t, 3>{203, 0, 113}));
327 : }
328 :
329 1206164 : bool CNetAddr::IsRFC3849() const
330 : {
331 1206164 : return IsIPv6() && HasPrefix(m_addr, std::array<uint8_t, 4>{0x20, 0x01, 0x0D, 0xB8});
332 : }
333 :
334 50 : bool CNetAddr::IsRFC3964() const
335 : {
336 50 : return IsIPv6() && HasPrefix(m_addr, std::array<uint8_t, 2>{0x20, 0x02});
337 : }
338 :
339 55 : bool CNetAddr::IsRFC6052() const
340 : {
341 98 : return IsIPv6() &&
342 43 : HasPrefix(m_addr, std::array<uint8_t, 12>{0x00, 0x64, 0xFF, 0x9B, 0x00, 0x00,
343 55 : 0x00, 0x00, 0x00, 0x00, 0x00, 0x00});
344 : }
345 :
346 46 : bool CNetAddr::IsRFC4380() const
347 : {
348 46 : return IsIPv6() && HasPrefix(m_addr, std::array<uint8_t, 4>{0x20, 0x01, 0x00, 0x00});
349 : }
350 :
351 559292 : bool CNetAddr::IsRFC4862() const
352 : {
353 559292 : return IsIPv6() && HasPrefix(m_addr, std::array<uint8_t, 8>{0xFE, 0x80, 0x00, 0x00,
354 559292 : 0x00, 0x00, 0x00, 0x00});
355 : }
356 :
357 559292 : bool CNetAddr::IsRFC4193() const
358 : {
359 559396 : return IsIPv6() && (m_addr[0] & 0xFE) == 0xFC;
360 : }
361 :
362 56 : bool CNetAddr::IsRFC6145() const
363 : {
364 100 : return IsIPv6() &&
365 44 : HasPrefix(m_addr, std::array<uint8_t, 12>{0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
366 56 : 0x00, 0x00, 0xFF, 0xFF, 0x00, 0x00});
367 : }
368 :
369 559292 : bool CNetAddr::IsRFC4843() const
370 : {
371 559292 : return IsIPv6() && HasPrefix(m_addr, std::array<uint8_t, 3>{0x20, 0x01, 0x00}) &&
372 22 : (m_addr[3] & 0xF0) == 0x10;
373 : }
374 :
375 559292 : bool CNetAddr::IsRFC7343() const
376 : {
377 559292 : return IsIPv6() && HasPrefix(m_addr, std::array<uint8_t, 3>{0x20, 0x01, 0x00}) &&
378 22 : (m_addr[3] & 0xF0) == 0x20;
379 : }
380 :
381 8 : bool CNetAddr::IsHeNet() const
382 : {
383 8 : return IsIPv6() && HasPrefix(m_addr, std::array<uint8_t, 4>{0x20, 0x01, 0x04, 0x70});
384 : }
385 :
386 : /**
387 : * Check whether this object represents a TOR address.
388 : * @see CNetAddr::SetSpecial(const std::string &)
389 : */
390 3000 : bool CNetAddr::IsTor() const { return m_net == NET_ONION; }
391 :
392 : /**
393 : * Check whether this object represents an I2P address.
394 : */
395 2991 : bool CNetAddr::IsI2P() const { return m_net == NET_I2P; }
396 :
397 : /**
398 : * Check whether this object represents a CJDNS address.
399 : */
400 9 : bool CNetAddr::IsCJDNS() const { return m_net == NET_CJDNS; }
401 :
402 716399 : bool CNetAddr::IsLocal() const
403 : {
404 : // IPv4 loopback (127.0.0.0/8 or 0.0.0.0/8)
405 1394862 : if (IsIPv4() && (m_addr[0] == 127 || m_addr[0] == 0)) {
406 : return true;
407 : }
408 :
409 : // IPv6 loopback (::1/128)
410 385974 : static const unsigned char pchLocal[16] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1};
411 423868 : if (IsIPv6() && memcmp(m_addr.data(), pchLocal, sizeof(pchLocal)) == 0) {
412 2 : return true;
413 : }
414 :
415 : return false;
416 : }
417 :
418 1439996 : bool CNetAddr::IsValid() const
419 : {
420 : // Cleanup 3-byte shifted addresses caused by garbage in size field
421 : // of addr messages from versions before 0.2.9 checksum.
422 : // Two consecutive addr messages look like this:
423 : // header20 vectorlen3 addr26 addr26 addr26 header20 vectorlen3 addr26 addr26 addr26...
424 : // so if the first length field is garbled, it reads the second batch
425 : // of addr misaligned by 3 bytes.
426 1673988 : if (IsIPv6() && memcmp(m_addr.data(), IPV4_IN_IPV6_PREFIX.data() + 3,
427 : sizeof(IPV4_IN_IPV6_PREFIX) - 3) == 0) {
428 : return false;
429 : }
430 :
431 : // unspecified IPv6 address (::/128)
432 1439996 : unsigned char ipNone6[16] = {};
433 1673988 : if (IsIPv6() && memcmp(m_addr.data(), ipNone6, sizeof(ipNone6)) == 0) {
434 : return false;
435 : }
436 :
437 : // documentation IPv6 address
438 1206163 : if (IsRFC3849())
439 : return false;
440 :
441 1206163 : if (IsInternal())
442 : return false;
443 :
444 1206162 : if (IsIPv4()) {
445 2411920 : const uint32_t addr = ReadBE32(m_addr.data());
446 1205955 : if (addr == INADDR_ANY || addr == INADDR_NONE) {
447 7 : return false;
448 : }
449 : }
450 :
451 : return true;
452 : }
453 :
454 675105 : bool CNetAddr::IsRoutable() const
455 : {
456 675105 : return IsValid() && !(IsRFC1918() || IsRFC2544() || IsRFC3927() || IsRFC4862() || IsRFC6598() || IsRFC5737() || (IsRFC4193() && !IsTor()) || IsRFC4843() || IsRFC7343() || IsLocal() || IsInternal());
457 : }
458 :
459 : /**
460 : * @returns Whether or not this is a dummy address that represents a name.
461 : *
462 : * @see CNetAddr::SetInternal(const std::string &)
463 : */
464 2738320 : bool CNetAddr::IsInternal() const
465 : {
466 2738320 : return m_net == NET_INTERNAL;
467 : }
468 :
469 16031 : bool CNetAddr::IsAddrV1Compatible() const
470 : {
471 16031 : switch (m_net) {
472 : case NET_IPV4:
473 : case NET_IPV6:
474 : case NET_INTERNAL:
475 : return true;
476 4 : case NET_ONION:
477 6 : return m_addr.size() == ADDR_TORV2_SIZE;
478 2 : case NET_I2P:
479 2 : case NET_CJDNS:
480 2 : return false;
481 0 : case NET_UNROUTABLE: // m_net is never and should not be set to NET_UNROUTABLE
482 0 : case NET_MAX: // m_net is never and should not be set to NET_MAX
483 0 : assert(false);
484 : } // no default case, so the compiler can warn about missing cases
485 :
486 0 : assert(false);
487 : }
488 :
489 2661 : enum Network CNetAddr::GetNetwork() const
490 : {
491 2661 : if (IsInternal())
492 : return NET_INTERNAL;
493 :
494 2660 : if (!IsRoutable())
495 : return NET_UNROUTABLE;
496 :
497 779 : return m_net;
498 : }
499 :
500 1 : static std::string IPv6ToString(Span<const uint8_t> a)
501 : {
502 1 : assert(a.size() == ADDR_IPV6_SIZE);
503 : // clang-format off
504 1 : return strprintf("%x:%x:%x:%x:%x:%x:%x:%x",
505 2 : ReadBE16(&a[0]),
506 2 : ReadBE16(&a[2]),
507 2 : ReadBE16(&a[4]),
508 2 : ReadBE16(&a[6]),
509 2 : ReadBE16(&a[8]),
510 2 : ReadBE16(&a[10]),
511 1 : ReadBE16(&a[12]),
512 1 : ReadBE16(&a[14]));
513 : // clang-format on
514 : }
515 :
516 334563 : std::string CNetAddr::ToStringIP() const
517 : {
518 334563 : switch (m_net) {
519 334551 : case NET_IPV4:
520 334551 : case NET_IPV6: {
521 669102 : CService serv(*this, 0);
522 334551 : struct sockaddr_storage sockaddr;
523 334551 : socklen_t socklen = sizeof(sockaddr);
524 334551 : if (serv.GetSockAddr((struct sockaddr*)&sockaddr, &socklen)) {
525 334551 : char name[1025] = "";
526 334551 : if (!getnameinfo((const struct sockaddr*)&sockaddr, socklen, name,
527 : sizeof(name), nullptr, 0, NI_NUMERICHOST))
528 334551 : return std::string(name);
529 : }
530 0 : if (m_net == NET_IPV4) {
531 0 : return strprintf("%u.%u.%u.%u", m_addr[0], m_addr[1], m_addr[2], m_addr[3]);
532 : }
533 0 : return IPv6ToString(m_addr);
534 : }
535 8 : case NET_ONION:
536 10 : switch (m_addr.size()) {
537 6 : case ADDR_TORV2_SIZE:
538 18 : return EncodeBase32(m_addr) + ".onion";
539 2 : case ADDR_TORV3_SIZE: {
540 :
541 2 : uint8_t checksum[torv3::CHECKSUM_LEN];
542 4 : torv3::Checksum(m_addr, checksum);
543 :
544 : // TORv3 onion_address = base32(PUBKEY | CHECKSUM | VERSION) + ".onion"
545 8 : prevector<torv3::TOTAL_LEN, uint8_t> address{m_addr.begin(), m_addr.end()};
546 4 : address.insert(address.end(), checksum, checksum + torv3::CHECKSUM_LEN);
547 4 : address.insert(address.end(), torv3::VERSION, torv3::VERSION + sizeof(torv3::VERSION));
548 :
549 6 : return EncodeBase32(address) + ".onion";
550 : }
551 0 : default:
552 0 : assert(false);
553 : }
554 1 : case NET_I2P:
555 3 : return EncodeBase32(m_addr, false /* don't pad with = */) + ".b32.i2p";
556 1 : case NET_CJDNS:
557 2 : return IPv6ToString(m_addr);
558 2 : case NET_INTERNAL:
559 6 : return EncodeBase32(m_addr) + ".internal";
560 0 : case NET_UNROUTABLE: // m_net is never and should not be set to NET_UNROUTABLE
561 0 : case NET_MAX: // m_net is never and should not be set to NET_MAX
562 0 : assert(false);
563 : } // no default case, so the compiler can warn about missing cases
564 :
565 0 : assert(false);
566 : }
567 :
568 10336 : std::string CNetAddr::ToString() const
569 : {
570 10336 : return ToStringIP();
571 : }
572 :
573 256954 : bool operator==(const CNetAddr& a, const CNetAddr& b)
574 : {
575 256954 : return a.m_net == b.m_net && a.m_addr == b.m_addr;
576 : }
577 :
578 18104 : bool operator!=(const CNetAddr& a, const CNetAddr& b)
579 : {
580 18104 : return a.m_net != b.m_net || a.m_addr != b.m_addr;
581 : }
582 :
583 722602 : bool operator<(const CNetAddr& a, const CNetAddr& b)
584 : {
585 722602 : return std::tie(a.m_net, a.m_addr) < std::tie(b.m_net, b.m_addr);
586 : }
587 :
588 333355 : bool CNetAddr::GetInAddr(struct in_addr* pipv4Addr) const
589 : {
590 333355 : if (!IsIPv4())
591 : return false;
592 333355 : assert(sizeof(*pipv4Addr) == m_addr.size());
593 666710 : memcpy(pipv4Addr, m_addr.data(), m_addr.size());
594 333355 : return true;
595 : }
596 :
597 : /**
598 : * Try to get our IPv6 address.
599 : *
600 : * @param[out] pipv6Addr The in6_addr struct to which to copy.
601 : *
602 : * @returns Whether or not the operation was successful, in particular, whether
603 : * or not our address was an IPv6 address.
604 : *
605 : * @see CNetAddr::IsIPv6()
606 : */
607 3386 : bool CNetAddr::GetIn6Addr(struct in6_addr* pipv6Addr) const
608 : {
609 3386 : if (!IsIPv6()) {
610 : return false;
611 : }
612 3386 : assert(sizeof(*pipv6Addr) == m_addr.size());
613 6772 : memcpy(pipv6Addr, m_addr.data(), m_addr.size());
614 3386 : return true;
615 : }
616 :
617 156027 : bool CNetAddr::HasLinkedIPv4() const
618 : {
619 156027 : return IsRoutable() && (IsIPv4() || IsRFC6145() || IsRFC6052() || IsRFC3964() || IsRFC4380());
620 : }
621 :
622 36253 : uint32_t CNetAddr::GetLinkedIPv4() const
623 : {
624 36253 : if (IsIPv4()) {
625 72498 : return ReadBE32(m_addr.data());
626 4 : } else if (IsRFC6052() || IsRFC6145()) {
627 : // mapped IPv4, SIIT translated IPv4: the IPv4 address is the last 4 bytes of the address
628 4 : return ReadBE32(MakeSpan(m_addr).last(ADDR_IPV4_SIZE).data());
629 2 : } else if (IsRFC3964()) {
630 : // 6to4 tunneled IPv4: the IPv4 address is in bytes 2-6
631 2 : return ReadBE32(MakeSpan(m_addr).subspan(2, ADDR_IPV4_SIZE).data());
632 1 : } else if (IsRFC4380()) {
633 : // Teredo tunneled IPv4: the IPv4 address is in the last 4 bytes of the address, but bitflipped
634 2 : return ~ReadBE32(MakeSpan(m_addr).last(ADDR_IPV4_SIZE).data());
635 : }
636 0 : assert(false);
637 : }
638 :
639 432279 : Network CNetAddr::GetNetClass() const
640 : {
641 : // Make sure that if we return NET_IPV6, then IsIPv6() is true. The callers expect that.
642 :
643 : // Check for "internal" first because such addresses are also !IsRoutable()
644 : // and we don't want to return NET_UNROUTABLE in that case.
645 432279 : if (IsInternal()) {
646 : return NET_INTERNAL;
647 : }
648 432277 : if (!IsRoutable()) {
649 : return NET_UNROUTABLE;
650 : }
651 119762 : if (HasLinkedIPv4()) {
652 : return NET_IPV4;
653 : }
654 29 : return m_net;
655 : }
656 :
657 237847 : uint32_t CNetAddr::GetMappedAS(const std::vector<bool> &asmap) const {
658 237847 : uint32_t net_class = GetNetClass();
659 237847 : if (asmap.size() == 0 || (net_class != NET_IPV4 && net_class != NET_IPV6)) {
660 : return 0; // Indicates not found, safe because AS0 is reserved per RFC7607.
661 : }
662 244258 : std::vector<bool> ip_bits(128);
663 6411 : if (HasLinkedIPv4()) {
664 : // For lookup, treat as if it was just an IPv4 address (IPV4_IN_IPV6_PREFIX + IPv4 bits)
665 83343 : for (int8_t byte_i = 0; byte_i < 12; ++byte_i) {
666 692388 : for (uint8_t bit_i = 0; bit_i < 8; ++bit_i) {
667 1230910 : ip_bits[byte_i * 8 + bit_i] = (IPV4_IN_IPV6_PREFIX[byte_i] >> (7 - bit_i)) & 1;
668 : }
669 : }
670 6411 : uint32_t ipv4 = GetLinkedIPv4();
671 211563 : for (int i = 0; i < 32; ++i) {
672 410304 : ip_bits[96 + i] = (ipv4 >> (31 - i)) & 1;
673 : }
674 : } else {
675 : // Use all 128 bits of the IPv6 address otherwise
676 0 : assert(IsIPv6());
677 0 : for (int8_t byte_i = 0; byte_i < 16; ++byte_i) {
678 0 : uint8_t cur_byte = m_addr[byte_i];
679 0 : for (uint8_t bit_i = 0; bit_i < 8; ++bit_i) {
680 0 : ip_bits[byte_i * 8 + bit_i] = (cur_byte >> (7 - bit_i)) & 1;
681 : }
682 : }
683 : }
684 6411 : uint32_t mapped_as = Interpret(asmap, ip_bits);
685 6411 : return mapped_as;
686 : }
687 :
688 : /**
689 : * Get the canonical identifier of our network group
690 : *
691 : * The groups are assigned in a way where it should be costly for an attacker to
692 : * obtain addresses with many different group identifiers, even if it is cheap
693 : * to obtain addresses with the same identifier.
694 : *
695 : * @note No two connections will be attempted to addresses with the same network
696 : * group.
697 : */
698 159049 : std::vector<unsigned char> CNetAddr::GetGroup(const std::vector<bool> &asmap) const
699 : {
700 159049 : std::vector<unsigned char> vchRet;
701 159049 : uint32_t net_class = GetNetClass();
702 : // If non-empty asmap is supplied and the address is IPv4/IPv6,
703 : // return ASN to be used for bucketing.
704 159049 : uint32_t asn = GetMappedAS(asmap);
705 159049 : if (asn != 0) { // Either asmap was empty, or address has non-asmappable net class (e.g. TOR).
706 3623 : vchRet.push_back(NET_IPV6); // IPv4 and IPv6 with same ASN should be in the same bucket
707 18115 : for (int i = 0; i < 4; i++) {
708 14492 : vchRet.push_back((asn >> (8 * i)) & 0xFF);
709 : }
710 : return vchRet;
711 : }
712 :
713 155426 : vchRet.push_back(net_class);
714 155426 : int nBits{0};
715 :
716 155426 : if (IsLocal()) {
717 : // all local addresses belong to the same group
718 67635 : } else if (IsInternal()) {
719 : // all internal-usage addresses get their own group
720 : nBits = ADDR_INTERNAL_SIZE * 8;
721 67634 : } else if (!IsRoutable()) {
722 : // all other unroutable addresses belong to the same group
723 29854 : } else if (HasLinkedIPv4()) {
724 : // IPv4 addresses (and mapped IPv4 addresses) use /16 groups
725 29842 : uint32_t ipv4 = GetLinkedIPv4();
726 29842 : vchRet.push_back((ipv4 >> 24) & 0xFF);
727 29842 : vchRet.push_back((ipv4 >> 16) & 0xFF);
728 29842 : return vchRet;
729 12 : } else if (IsTor() || IsI2P() || IsCJDNS()) {
730 : nBits = 4;
731 8 : } else if (IsHeNet()) {
732 : // for he.net, use /36 groups
733 : nBits = 36;
734 : } else {
735 : // for the rest of the IPv6 network, use /32 groups
736 7 : nBits = 32;
737 : }
738 :
739 : // Push our address onto vchRet.
740 125584 : const size_t num_bytes = nBits / 8;
741 251168 : vchRet.insert(vchRet.end(), m_addr.begin(), m_addr.begin() + num_bytes);
742 125584 : nBits %= 8;
743 : // ...for the last byte, push nBits and for the rest of the byte push 1's
744 125584 : if (nBits > 0) {
745 5 : assert(num_bytes < m_addr.size());
746 10 : vchRet.push_back(m_addr[num_bytes] | ((1 << (8 - nBits)) - 1));
747 : }
748 :
749 : return vchRet;
750 : }
751 :
752 15766 : std::vector<unsigned char> CNetAddr::GetAddrBytes() const
753 : {
754 15766 : if (IsAddrV1Compatible()) {
755 15766 : uint8_t serialized[V1_SERIALIZATION_SIZE];
756 15766 : SerializeV1Array(serialized);
757 15766 : return {std::begin(serialized), std::end(serialized)};
758 : }
759 0 : return std::vector<unsigned char>(m_addr.begin(), m_addr.end());
760 : }
761 :
762 21 : uint64_t CNetAddr::GetHash() const
763 : {
764 63 : uint256 hash = Hash(m_addr.begin(), m_addr.end());
765 21 : uint64_t nRet;
766 21 : memcpy(&nRet, &hash, sizeof(nRet));
767 21 : return nRet;
768 : }
769 :
770 : // private extensions to enum Network, only returned by GetExtNetwork,
771 : // and only used in GetReachabilityFrom
772 : static const int NET_UNKNOWN = NET_MAX + 0;
773 : static const int NET_TEREDO = NET_MAX + 1;
774 0 : int static GetExtNetwork(const CNetAddr *addr)
775 : {
776 0 : if (addr == nullptr)
777 : return NET_UNKNOWN;
778 0 : if (addr->IsRFC4380())
779 : return NET_TEREDO;
780 0 : return addr->GetNetwork();
781 : }
782 :
783 : /** Calculates a metric for how reachable (*this) is from a given partner */
784 1 : int CNetAddr::GetReachabilityFrom(const CNetAddr *paddrPartner) const
785 : {
786 1 : enum Reachability {
787 : REACH_UNREACHABLE,
788 : REACH_DEFAULT,
789 : REACH_TEREDO,
790 : REACH_IPV6_WEAK,
791 : REACH_IPV4,
792 : REACH_IPV6_STRONG,
793 : REACH_PRIVATE
794 : };
795 :
796 1 : if (!IsRoutable() || IsInternal())
797 : return REACH_UNREACHABLE;
798 :
799 0 : int ourNet = GetExtNetwork(this);
800 0 : int theirNet = GetExtNetwork(paddrPartner);
801 0 : bool fTunnel = IsRFC3964() || IsRFC6052() || IsRFC6145();
802 :
803 0 : switch(theirNet) {
804 0 : case NET_IPV4:
805 0 : switch(ourNet) {
806 : default: return REACH_DEFAULT;
807 0 : case NET_IPV4: return REACH_IPV4;
808 : }
809 0 : case NET_IPV6:
810 0 : switch(ourNet) {
811 : default: return REACH_DEFAULT;
812 0 : case NET_TEREDO: return REACH_TEREDO;
813 0 : case NET_IPV4: return REACH_IPV4;
814 0 : case NET_IPV6: return fTunnel ? REACH_IPV6_WEAK : REACH_IPV6_STRONG; // only prefer giving our IPv6 address if it's not tunnelled
815 : }
816 0 : case NET_ONION:
817 0 : switch(ourNet) {
818 : default: return REACH_DEFAULT;
819 0 : case NET_IPV4: return REACH_IPV4; // Tor users can connect to IPv4 as well
820 0 : case NET_ONION: return REACH_PRIVATE;
821 : }
822 0 : case NET_TEREDO:
823 0 : switch(ourNet) {
824 : default: return REACH_DEFAULT;
825 0 : case NET_TEREDO: return REACH_TEREDO;
826 0 : case NET_IPV6: return REACH_IPV6_WEAK;
827 0 : case NET_IPV4: return REACH_IPV4;
828 : }
829 0 : case NET_UNKNOWN:
830 0 : case NET_UNROUTABLE:
831 0 : default:
832 0 : switch(ourNet) {
833 : default: return REACH_DEFAULT;
834 0 : case NET_TEREDO: return REACH_TEREDO;
835 0 : case NET_IPV6: return REACH_IPV6_WEAK;
836 0 : case NET_IPV4: return REACH_IPV4;
837 0 : case NET_ONION: return REACH_PRIVATE; // either from Tor, or don't care about our address
838 : }
839 : }
840 : }
841 :
842 2101426 : CService::CService() : port(0)
843 : {
844 2101426 : }
845 :
846 949654 : CService::CService(const CNetAddr& cip, uint16_t portIn) : CNetAddr(cip), port(portIn)
847 : {
848 949654 : }
849 :
850 3 : CService::CService(const struct in_addr& ipv4Addr, uint16_t portIn) : CNetAddr(ipv4Addr), port(portIn)
851 : {
852 3 : }
853 :
854 2 : CService::CService(const struct in6_addr& ipv6Addr, uint16_t portIn) : CNetAddr(ipv6Addr), port(portIn)
855 : {
856 2 : }
857 :
858 791 : CService::CService(const struct sockaddr_in& addr) : CNetAddr(addr.sin_addr), port(ntohs(addr.sin_port))
859 : {
860 791 : assert(addr.sin_family == AF_INET);
861 791 : }
862 :
863 0 : CService::CService(const struct sockaddr_in6 &addr) : CNetAddr(addr.sin6_addr, addr.sin6_scope_id), port(ntohs(addr.sin6_port))
864 : {
865 0 : assert(addr.sin6_family == AF_INET6);
866 0 : }
867 :
868 791 : bool CService::SetSockAddr(const struct sockaddr *paddr)
869 : {
870 791 : switch (paddr->sa_family) {
871 791 : case AF_INET:
872 791 : *this = CService(*(const struct sockaddr_in*)paddr);
873 791 : return true;
874 0 : case AF_INET6:
875 0 : *this = CService(*(const struct sockaddr_in6*)paddr);
876 0 : return true;
877 : default:
878 : return false;
879 : }
880 : }
881 :
882 10881 : uint16_t CService::GetPort() const
883 : {
884 10881 : return port;
885 : }
886 :
887 38217 : bool operator==(const CService& a, const CService& b)
888 : {
889 76434 : return static_cast<CNetAddr>(a) == static_cast<CNetAddr>(b) && a.port == b.port;
890 : }
891 :
892 18104 : bool operator!=(const CService& a, const CService& b)
893 : {
894 36208 : return static_cast<CNetAddr>(a) != static_cast<CNetAddr>(b) || a.port != b.port;
895 : }
896 :
897 206683 : bool operator<(const CService& a, const CService& b)
898 : {
899 769526 : return static_cast<CNetAddr>(a) < static_cast<CNetAddr>(b) || (static_cast<CNetAddr>(a) == static_cast<CNetAddr>(b) && a.port < b.port);
900 : }
901 :
902 336741 : bool CService::GetSockAddr(struct sockaddr* paddr, socklen_t *addrlen) const
903 : {
904 336741 : if (IsIPv4()) {
905 333355 : if (*addrlen < (socklen_t)sizeof(struct sockaddr_in))
906 : return false;
907 333355 : *addrlen = sizeof(struct sockaddr_in);
908 333355 : struct sockaddr_in *paddrin = (struct sockaddr_in*)paddr;
909 333355 : memset(paddrin, 0, *addrlen);
910 333355 : if (!GetInAddr(&paddrin->sin_addr))
911 : return false;
912 333355 : paddrin->sin_family = AF_INET;
913 333355 : paddrin->sin_port = htons(port);
914 333355 : return true;
915 : }
916 3386 : if (IsIPv6()) {
917 3386 : if (*addrlen < (socklen_t)sizeof(struct sockaddr_in6))
918 : return false;
919 3386 : *addrlen = sizeof(struct sockaddr_in6);
920 3386 : struct sockaddr_in6 *paddrin6 = (struct sockaddr_in6*)paddr;
921 3386 : memset(paddrin6, 0, *addrlen);
922 3386 : if (!GetIn6Addr(&paddrin6->sin6_addr))
923 : return false;
924 3386 : paddrin6->sin6_scope_id = scopeId;
925 3386 : paddrin6->sin6_family = AF_INET6;
926 3386 : paddrin6->sin6_port = htons(port);
927 3386 : return true;
928 : }
929 : return false;
930 : }
931 :
932 15154 : std::vector<unsigned char> CService::GetKey() const
933 : {
934 15154 : auto key = GetAddrBytes();
935 15154 : key.push_back(port / 0x100); // most significant byte of our port
936 15154 : key.push_back(port & 0x0FF); // least significant byte of our port
937 15154 : return key;
938 : }
939 :
940 305733 : std::string CService::ToStringPort() const
941 : {
942 305733 : return strprintf("%u", port);
943 : }
944 :
945 305733 : std::string CService::ToStringIPPort() const
946 : {
947 305733 : if (IsIPv4() || IsTor() || IsI2P() || IsInternal()) {
948 605502 : return ToStringIP() + ":" + ToStringPort();
949 : } else {
950 5964 : return "[" + ToStringIP() + "]:" + ToStringPort();
951 : }
952 : }
953 :
954 303429 : std::string CService::ToString() const
955 : {
956 303429 : return ToStringIPPort();
957 : }
958 :
959 1074 : CSubNet::CSubNet():
960 1074 : valid(false)
961 : {
962 1074 : memset(netmask, 0, sizeof(netmask));
963 1074 : }
964 :
965 413 : CSubNet::CSubNet(const CNetAddr& addr, uint8_t mask) : CSubNet()
966 : {
967 413 : valid = (addr.IsIPv4() && mask <= ADDR_IPV4_SIZE * 8) ||
968 13 : (addr.IsIPv6() && mask <= ADDR_IPV6_SIZE * 8);
969 413 : if (!valid) {
970 : return;
971 : }
972 :
973 410 : assert(mask <= sizeof(netmask) * 8);
974 :
975 410 : network = addr;
976 :
977 410 : uint8_t n = mask;
978 2170 : for (size_t i = 0; i < network.m_addr.size(); ++i) {
979 1760 : const uint8_t bits = n < 8 ? n : 8;
980 1760 : netmask[i] = (uint8_t)((uint8_t)0xFF << (8 - bits)); // Set first bits.
981 1760 : network.m_addr[i] &= netmask[i]; // Normalize network according to netmask.
982 1760 : n -= bits;
983 : }
984 : }
985 :
986 : /**
987 : * @returns The number of 1-bits in the prefix of the specified subnet mask. If
988 : * the specified subnet mask is not a valid one, -1.
989 : */
990 6886 : static inline int NetmaskBits(uint8_t x)
991 : {
992 6886 : switch(x) {
993 : case 0x00: return 0;
994 8 : case 0x80: return 1;
995 8 : case 0xc0: return 2;
996 11 : case 0xe0: return 3;
997 8 : case 0xf0: return 4;
998 8 : case 0xf8: return 5;
999 10 : case 0xfc: return 6;
1000 9 : case 0xfe: return 7;
1001 6714 : case 0xff: return 8;
1002 2 : default: return -1;
1003 : }
1004 : }
1005 :
1006 50 : CSubNet::CSubNet(const CNetAddr& addr, const CNetAddr& mask) : CSubNet()
1007 : {
1008 50 : valid = (addr.IsIPv4() || addr.IsIPv6()) && addr.m_net == mask.m_net;
1009 50 : if (!valid) {
1010 : return;
1011 : }
1012 : // Check if `mask` contains 1-bits after 0-bits (which is an invalid netmask).
1013 47 : bool zeros_found = false;
1014 375 : for (auto b : mask.m_addr) {
1015 238 : const int num_bits = NetmaskBits(b);
1016 238 : if (num_bits == -1 || (zeros_found && num_bits != 0)) {
1017 4 : valid = false;
1018 4 : return;
1019 : }
1020 234 : if (num_bits < 8) {
1021 138 : zeros_found = true;
1022 : }
1023 : }
1024 :
1025 43 : assert(mask.m_addr.size() <= sizeof(netmask));
1026 :
1027 43 : memcpy(netmask, mask.m_addr.data(), mask.m_addr.size());
1028 :
1029 43 : network = addr;
1030 :
1031 : // Normalize network according to netmask
1032 263 : for (size_t x = 0; x < network.m_addr.size(); ++x) {
1033 440 : network.m_addr[x] &= netmask[x];
1034 : }
1035 : }
1036 :
1037 453 : CSubNet::CSubNet(const CNetAddr& addr) : CSubNet()
1038 : {
1039 453 : valid = addr.IsIPv4() || addr.IsIPv6();
1040 453 : if (!valid) {
1041 : return;
1042 : }
1043 :
1044 452 : assert(addr.m_addr.size() <= sizeof(netmask));
1045 :
1046 452 : memset(netmask, 0xFF, addr.m_addr.size());
1047 :
1048 452 : network = addr;
1049 : }
1050 :
1051 298439 : bool CSubNet::Match(const CNetAddr &addr) const
1052 : {
1053 298439 : if (!valid || !addr.IsValid() || network.m_net != addr.m_net)
1054 17 : return false;
1055 298422 : assert(network.m_addr.size() == addr.m_addr.size());
1056 1492158 : for (size_t x = 0; x < addr.m_addr.size(); ++x) {
1057 3581265 : if ((addr.m_addr[x] & netmask[x]) != network.m_addr[x]) {
1058 : return false;
1059 : }
1060 : }
1061 : return true;
1062 : }
1063 :
1064 824 : std::string CSubNet::ToString() const
1065 : {
1066 824 : assert(network.m_addr.size() <= sizeof(netmask));
1067 :
1068 824 : uint8_t cidr = 0;
1069 :
1070 7472 : for (size_t i = 0; i < network.m_addr.size(); ++i) {
1071 7066 : if (netmask[i] == 0x00) {
1072 : break;
1073 : }
1074 6648 : cidr += NetmaskBits(netmask[i]);
1075 : }
1076 :
1077 1648 : return network.ToString() + strprintf("/%u", cidr);
1078 : }
1079 :
1080 224 : bool CSubNet::IsValid() const
1081 : {
1082 224 : return valid;
1083 : }
1084 :
1085 2 : bool operator==(const CSubNet& a, const CSubNet& b)
1086 : {
1087 2 : return a.valid == b.valid && a.network == b.network && !memcmp(a.netmask, b.netmask, 16);
1088 : }
1089 :
1090 1 : bool operator!=(const CSubNet& a, const CSubNet& b)
1091 : {
1092 1 : return !(a==b);
1093 : }
1094 :
1095 69 : bool operator<(const CSubNet& a, const CSubNet& b)
1096 : {
1097 69 : return (a.network < b.network || (a.network == b.network && memcmp(a.netmask, b.netmask, 16) < 0));
1098 : }
|